

ASX Announcement (ASX: OBM)

RIVERINA EXPLORATION UPDATE

High-grade Main Lode & Murchison Lode extended south and at depth Additional parallel system known as Reggies Lode identified to the East Results drive expanded drill program to accelerate mining decision

HIGHLIGHTS:

- Results from Phase 1 drilling continue to expand and enhance the Riverina system for underground mining potential
- Drilling (since OBM's last ASX update on 19 October 2022) has significantly extended Riverina's high-grade mineralisation more than 100m to the south and 100m vertically. The deposit remains open in all directions
- The exciting results to date (29 holes from a 46 diamond hole program) have doubled the depth of known mineralisation from 240m to 480m
- > New significant intercepts (see Figure 1) include:

0	2.5m @ 29.0 g/t	Main Lode East
---	-----------------	----------------

0	2.4m @ 26.4 g/t	Main Lode East
0	2.711 @ 20.7 8/1	

- 1.2m @ 51.0 g/t
 Main Lode East
- 3.4m @ 14.3 g/t Main Lode East
- 2.8m @ 9.52 g/t
 Main Lode East
- 1.0m 14.6 g/t Main Lode East
- 2.0m @ 13.2 g/t Main Lode West (including 1.0m @ 25.1g/t)
- 1.4m @ 14.2g/t
 Main Lode West
- 1.0m @ 40.3 g/t Murchison Lode
- 0.9m @ 30.5 g/ t Murchison Lode
- 0.7m @ 26.1g/t Murchison Lode
- The deepest hole drilled to date has intersected visible gold returning 1.0m @ 14.6g/t (Main Lode East) and 1.4m @ 14.2g/t (Main Lode West) at 480 vertical metres below surface. The exploration window and plunge continuity at depth remains untested by drilling
- The deepest hole drilled to date on the Murchison Lode has intersected visible gold returning 0.7m @ 26.1g/t at a depth of 410 vertical metres - again further enhancing the exploration window at depth and along plunge
- The program also hit a parallel structure known as Reggie's Lode at depth. The intercept returned 0.7m @ 4.2 g/t & 0.5m @ 6.8 g/t and adds to Riverina's prospectivity
- ➢ 46 diamond holes for 13,046 metres have now been completed. Given the excellent results, the program was expanded to 54 holes for a total of 15,331 design metres. Results have been returned from 29 holes with a further 17 holes currently being processed. Eight diamond holes remain to be drilled
- Given the outstanding drilling results returned to date, a Phase 2 drilling program is being designed to help the Company accelerate a potential mining decision

Managing Director's Comment:

"The drilling of Riverina as a high-grade underground target continues to impress, with the consistency of the mineralised structures and high-grade tenor giving us confidence that this is a large scale system," Ora Banda Mining Limited's Managing Director, Luke Creagh, said.

"We are excited by the results so far, as well as the positive impact these drill programs are expected to have on the underground resource estimate, which is on track to be updated in the March quarter.

"With that in mind, we are in a good position for a mining investment decision in H2 of FY23, which could potentially deliver high grade underground ore to increase our production profile."

Figure 1 Cross Section looking north

Refer ASX announcement dated 19 Oct 2022, 17 Apr 2018, 29 Jul 2019, 26 Aug 2019, 16 Sept 2019, 8 Oct 2019, 9 Apr 2020, 10 Aug 2020, 8 Mar 2021 and 2 Aug 2021 for further drilling details

Main Lode Drilling

- The Main Lodes are made up of two parallel structures (East and West) that are sub-vertical and ~10 metres apart
- > The Main Lode East is the prominent mineralised structure
- The current drilling results has further proven the strike continuity of the Main Lode structure for more than 1km and demonstrated that the system is open in all directions including high grade intercepts at depth
- The success of the deepest hole drilled to date (Hole 049) greatly enhances the exploration window at depth and down plunge to the south
- The high grade drilling intersection in Main Lode West (1.4m @ 14.2g/t) bodes well for further extensions at depth on this lode horizon

Murchison Lode – Emerging High Grade Potential at Depth

- A new, narrow vein and high-grade extension of the Murchison lode has been identified in deeper drilling that runs parallel to the existing Main Lode
- The Murchison Lode is located between ~20m and ~80m east of Main Lode and is presenting as an attractive, high-grade, narrow vein underground mining target
- This lode system was not targeted in historical drilling as previous drilling in this area was shallow and largely from the West; therefore there were no deeper intersections
- The Murchison Lode has five of the top ten grades ever sampled in the Riverina system and has a proven strike of over 700m and is considered poorly tested below 200m

Reggies Lode – Emerging exploration window

- The first hole to hit Reggies Lode at depth returned 0.7m @ 4.2 g/t & 0.5m @ 6.8 g/t greatly enhancing this untested exploration window
- > All previous drilling on Reggies Lode was relatively shallow targeting near surface open pit resource
- > Reggies at depth remains a high priority exploration target

Riverina – Ideal geometry for low capital selective mining

- Single decline and infrastructure can access all lodes at the same time, improving equipment efficiency and increase production rates
- Grade control drilling can be done from stockpiles as the decline advances which allows for fast and accurate geological data and the ability to identify high-grade trends
- Access drives off the decline can easily be optimised to ensure they are targeting the highest grade ore, such that waste development is minimised

Figure 2 - Conceptual design demonstrating parallel lodes accessed from one centralised decling

Figure 3 - Long Section of Main Lode East

Refer ASX announcement dated 19 Oct 2022, 17 Apr 2018, 29 Jul 2019, 26 Aug 2019, 16 Sept 2019, 8 Oct 2019, 9 Apr 2020, 10 Aug 2020, 8 Mar 2021 and 2 Aug 2021 for further drilling details.

Figure 4 - Long Section of Murchison Lode

Refer ASX announcement dated 19 Oct 2022, 17 Apr 2018, 29 Jul 2019, 26 Aug 2019, 16 Sept 2019, 8 Oct 2019, 9 Apr 2020, 10 Aug 2020, 8 Mar 2021 and 2 Aug 2021 for further drilling details.

Figure 5 - Long Section looking west – showing open exploration windows with limited drilling at depth or down plunge of mineralisation

OBM's Underground Exploration Strategy

A key pillar of OBM's 3-Year Strategy to create value is by committing exploration expenditure targeting high-grade underground ore enhancing the potential to increase production above 100kozpa.

OBM prioritised drilling of the underground extensions at Riverina in July 2022, considering:

- The project had an existing high-grade underground resource of 151koz at 6.6 g/t* (see Appendix 1)
- Historical mining down to ~120 vertical metres extracted 100kt at ~12 g/t**
- Developing the Riverina Underground is considered a relatively quick, low capex option given the existing infrastructure in the area and the ability to develop a mine portal from the base of the current open pit
- Riverina ore has been processed at the Davyhurst mill and has recoveries of ~92%
- There has been limited deep drilling in the overall system which is open in all directions and was poorly tested below 250 vertical metres
- The program currently underway is the first diamond drilling exploration program in more than 12 months on the tenement package
- OBM is in the process of collating all exploration data and anticipates announcing a resource update in the March quarter

Figure 6 - Overview of OBM Tenement Package

Figure 7 - Plan view of Riverina Project

* The Company's Mineral Resources and Ore Reserves Statement as at 30 June 2022 was announced to the ASX on 01 August 2022. The Company is not aware of any new information or data which materially affects the information included in that announcement and, for the estimate of mineral resources, all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. See Appendix 1 for detail.

** Source - Historical Production figures sourced from internal Company records (Monarch Gold 2008)

This announcement was authorised for release to the ASX by Luke Creagh, Managing Director.

For further information about Ora Banda Mining Ltd and its projects please visit the Company's website at <u>www.orabandamining.com.au</u>.

Investor & Media Queries: Luke Creagh Managing Director +61 8 6365 4548 admin@orabandamining.com.au

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled under the supervision of Mr Andrew Czerw, an employee of Ora Banda Mining Limited, who is Member of the Australian Institute of Mining and Metallurgy. Mr Czerw has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Czerw consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-looking Statements

This Announcement contains forward-looking statements which may be identified by words such as "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this Announcement, are expected to take place. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements. The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this Announcement, except where required by law. The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forward looking statements contained in this Announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

Appendix 1 - Mineral Resource Table

PROJ	FCT	Cut Off	MEAS	SURED	INDIC	ATED	INFE	RRED	то	TAL MATER	IAL
		cuton	('000t)	(g/t Au)	('000oz.)						
GOLDEN EAGLE		2.0	63	3.8	215	3.2	206	3.1	484	3.3	51
LIGHTS OF ISRAEL	L	3.0	-	-	74	4.3	180	4.2	254	4.2	34
MAKAI SHOOT		1.0	-	-	1,985	2.0	153	1.7	2,138	2.0	136
	Open Pit	0.5	-	-	1,948	2.4	131	2.9	2,079	2.4	159
WAIHI	Underground	2.0	-	-	188	3.7	195	4.0	383	3.8	47
	TOTAL		-	-	2,136	2.5	326	3.5	2,462	2.6	206
Central Davyhu	rst Subtotal		-	-	4,410	2.3	865	3.2	5,338	2.5	427
LADY GLADYS		1.0	-	-	1,858	1.9	190	2.4	2,048	1.9	125
	Open Pit	0.5	599	1.5	2,120	1.6	110	1.6	2,829	1.6	141
RIVERINA AREA	Underground	2.0	-	-	351	6.7	361	6.5	712	6.6	151
	TOTAL		599	1.5	2,471	2.3	471	5.3	3,541	2.6	292
	Open Pit	0.5	-	-	386	1.6	17	1.6	403	1.6	21
BRITISH LION	Underground	2.0	-	-	36	3.2	3	3.8	39	3.2	4
	TOTAL		-	-	422	1.7	20	2.0	442	1.7	25
	Open Pit	0.5	-	-	-	-	691	1.5	691	1.5	33
FOREHAND	Underground	2.0	-	-	-	-	153	2.5	153	2.5	12
	TOTAL		-		-		844	1.7	844	1.7	46
	Open Pit	0.5	-	-	-		127	2.3	127	2.3	9
SILVER TONGUE	Underground	2.0	-		-		77	4.5	77	4.5	11
	TOTAL		-	-	-		204	3.1	204	3.1	21
SUNRAYSIA		1.0	-		175	2.1	318	2.0	493	2.0	32
Riverina-Mulline	e Subtotal		599	1.5	4,926	1.9	2.047	2.8	7,572	2.2	540
	Open Pit	0.5	73	2.3	923	3.4	201	3.0	1,197	3.2	124
SAND KING	Underground	2.0	-		408	3.5	586	3.4	994	3.4	110
	TOTAL		73	2.3	1,331	3.4	787	3.3	2,191	3.3	235
	Open Pit	0.5	-	-	980	3.3	50	2.9	1,030	3.2	107
MISSOURI	Underground	2.0	-	-	378	3.3	409	3.6	787	3.4	87
	TOTAL		-	-	1,358	3.3	459	3.5	1,817	3.3	194
PALMERSTON / C	-	1.0	-	-	118	2.3	174	2.4	292	2.4	23
BLACK RABBIT		1.0	-			-	434	3.5	434	3.5	49
Siberia Subtota			_	-	2,807	3.3	1,854	3.3	4,734	3.3	500
	Open Pit	0.5	-	-	241	3.7	28	1.6	269	3.5	30
CALLION	Underground	2.0			255	6.0	156	5.5	411	5.8	77
	TOTAL		-	-	496	4.9	184	4.9	680	4.9	107
Callion Subtotal			_	-	496	4.9	184	4.9	680	4.9	107
FEDERAL FLAG		1.0	32	2	112	1.8	238	2.5	382	2.3	28
SALMON GUMS		1.0	-	-	199	2.8	108	2.9	307	2.8	28
WALHALLA		1.0	-	-	448	1.8	216	1.4	664	1.7	36
WALHALLA NORT	ГН	1.0	-	-	94	2.4	13	3.0	107	2.5	9
MTBANJO		1.0	-		109	2.3	126	1.4	235	1.8	14
MACEDON		1.0	-	-	-	-	186	1.8	186	1.8	11
Walhalla Subtot	tal		32	2.0	962	2.1	887	2.0	1,881	2.1	125
	Open Pit	1.0	148	2	3,847	1.7	146	1.7	4,141	1.7	226
IGUANA		2.0	140	2	3,847		314				68
IGUANA	Underground	2.0				3.5		2.7	671	3.1	
	TOTAL				4,204	1.8	460	2.4	4,812	1.9	294
LIZARD		1.0	106	4	75	3.7	13	2.8	194	3.8	24
Lady Ida Subtot	al		254	2.8	4,279	3.7	473	4.8	5,006	2.0	318
Davyhurst Tot			900	1.9	17,900	2.8	6,300	3.1	25,200	2.5	2,020

- The Missouri, Sand King, Riverina Open pit, British Lion, Waihi, Callion, Golden Eagle, Forehand and Silver Tongue Mineral Resources have been updated in accordance with all relevant aspects of the JORC code 2012, and initially released to the market on 15 December 2016 & 26 May 2020 (Missouri), 3 January 2017 & 26 May 2020 (Sand King), 2 December 2019 & 26 May 2020 (Riverina), 4 February 2020 (Waihi), 15 May 2020 & 29 June 2020 (Callion), 8 April 2020 (Golden Eagle) and 9 October 2020 (Riverina South). Details on Iguana and Riverina Underground are included in this release.
- 2. All Mineral Resources listed above, with the exception of the Missouri, Sand King, Riverina, British Lion, Waihi, Callion, Golden Eagle, Forehand, Silver Tongue and Iguana Mineral Resources, were prepared previously and first disclosed under the JORC Code 2004 (refer Swan Gold Mining Limited Prospectus released to the market on 13 February 2013). These Mineral Resources have not been updated in accordance with JORC Code 2012 on the basis that the information has not materially changed since it was first reported.
- 3. The Riverina Open Pit, British Lion, Waihi, Sand King, Missouri, Callion, Forehand, Silver Tongue and Iguana Open Pit Mineral Resource Estimates are reported within a A\$2,400/oz pit shell above 0.5 g/t. The Riverina Underground, British Lion, Waihi, Sand King, Missouri, Callion, Forehand, Silver Tongue, Iguana and Golden Eagle Underground Mineral Resource Estimates are reported from material outside a A\$2,400 pit shell and above 2.0 g/t.
- 4. Resources are inclusive of in-situ ore reserves and are exclusive of surface stockpiles
- 5. The above table may contain rounding adjustments.

The Company's Mineral Resources and Ore Reserves Statement as at 30 June 2022 was announced to the ASX on 01 August 2022. The company is not aware of any new information or data which materially affects the information included in that announcement and, for the estimate of mineral resources, all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed.

Appendix 2: Significant Intersections Table

ORABANDA	Significant Intersections Table									Cu	toff Grade:	1.0 g/t Au 2.0 g/t Au	
MINING	5								-	Min Intore	Including: ept Width:	0.2m	
V											tive Waste:	2.0m	
						END	DEDTU	DEDTU	- Max	consecu	2.011		
HOLE ID	MGA North	MGA East	RL	AZI	DIP	END DEPTH	depth From	DEPTH TO	INTERVAL	GRADE	GRAM METRES	Au g/t interval	
RVDD22007	6706364	264681	438	270	-62	384.4	144.1	144.4	0.3	1.31	0.3	0.3m @ 1.31 g/t	
							180.5	181.1	0.6	1.82	1.2	0.6m @ 1.82 g/t	
							185.0	188.0	3.0	0.90	2.7	3.0m @ 0.90 g/t	
							202.0	206.0	4.0	0.94	3.7	4.0m @ 0.94 g/t	
							Incl 205.6	206.0	0.4	2.61	1.0	0.4m @ 2.61 g/t	
							288.6	288.9	0.3	6.69	2.2	0.3m @ 6.69 g/t	
							313.2	313.6	0.4	9.73	3.7	0.4m @ 9.73 g/t	
							361.0 Incl 361.0	362.5 362.2	1.5 1.2	4.72 5.66	6.9 6.6	1.5m @ 4.72 g/t 1.2m @ 5.66 g/t	
VDD22010A	6706337	264676	438	259	-66	396.5	204.0	204.6	0.6	3.13	1.9	0.6m @ 3.13 g/t	
VDD22010A	0100331	204070	430	200	-00	330.5	204.0	204.0	2.4	1.50	3.6	2.4m @ 1.50 g/t	
							Incl 209.0	210.0	1.0	2.26	2.3	1.0m @ 2.26 g/t	
							215.0	216.0	1.0	8.31	8.3	1.0m @ 8.31 g/t	
							362.0	363.5	1.5	3.01	4.5	1.5m @ 3.01 g/t	
							Incl 362.0	363.0	1.0	3.79	3.8	1.0m @ 3.79 g/t	
VDD22013B	6706303	264636	440	272	-64	290.0	21.0	22.0	1.0	1.16	1.2	1.0m @ 1.16 g/t	
					•		84.0	85.0	1.0	1.32	1.3	1.0m @ 1.32 g/t	
RVDD22014	6706338	264676	438	257	-62	378.5	131.5	132.2	0.7	1.08	0.8	0.7m @ 1.08 g/t	
					02		192.0	193.0	1.0	3.94	3.9	1.0m @ 3.94 g/t	
							199.3	199.7	0.3	2.30	0.8	0.3m @ 2.30 g/t	
							209.7	210.3	0.7	2.18	1.4	0.7m @ 2.18 g/t	
							216.0	217.0	1.0	1.04	1.0	1.0m @ 1.04 g/t	
							249.0	250.0	1.0	1.94	1.9	1.0m @ 1.94 g/t	
							275.8	276.3	0.5	6.49	3.1	0.5m @ 6.49 g/t	
							330.0	332.0	2.0	13.19	26.4	2.0m @ 13.19 g/t	
							Incl 331.0	332.0	1.0	25.09	25.1	1.0m @ 25.09 g/t	
							345.0	346.0	1.0	6.37	6.4	1.0m @ 6.37 g/t	
VDD22015A	6706307	264636	439	272	-59	59 220.0	70.0	71.0	1.0	2.22	2.2	1.0m @ 2.22 g/t	
							160.0	161.8	1.8	2.58	4.5	1.8m @ 2.58 g/t	
							166.0	167.0	1.0	1.42	1.4	1.0m @ 1.42 g/t	
							181.7	182.4	0.7	3.30	2.2	0.7m @ 3.30 g/t	
RVDD22016	6706687	264612	430	260	-55	240.4	11.0	12.0	1.0	1.35	1.4	1.0m @ 1.35 g/t	
							54.0	55.0	1.0	3.29	3.3	1.0m @ 3.29 g/t	
							125.8	128.0	2.2	0.95	2.1	2.2m @ 0.95 g/t	
							Incl 125.8	126.1	0.3	2.02	0.5	0.3m @ 2.02 g/t	
							152.0	153.0	1.0	2.34	2.3	1.0m @ 2.34 g/t	
							156.4	156.8	0.4	2.58	1.1	0.4m @ 2.58 g/t	
							188.9 195.4	189.5 195.8	0.6	6.51 2.46	4.0	0.6m @ 6.51 g/t 0.4m @ 2.46 g/t	
							205.0	206.0	1.0	4.86	4.9	1.0m @ 4.86 g/t	
							203.0	200.0	2.5	6.36	16.1	2.5m @ 6.36 g/t	
							215.0	216.0	1.0	1.96	2.0	1.0m @ 1.96 g/t	
RVDD22017	6706700	264625	430	270	-49	240.9	14.0	15.0	1.0	1.13	1.1	1.0m @ 1.13 g/t	
							29.0	30.0	1.0	1.14	1.1	1.0m @ 1.14 g/t	
							52.0	54.0	2.0	2.29	4.6	2.0m @ 2.29 g/t	
							Incl 52.0	53.0	1.0	3.27	3.3	1.0m @ 3.27 g/t	
							66.0	67.0	1.0	4.05	4.1	1.0m @ 4.05 g/t	
							92.0	96.0	4.0	1.28	5.1	4.0m @ 1.28 g/t	
							Incl 92.0	93.0	1.0	2.06	2.1	1.0m @ 2.06 g/t	
							130.0	135.0	5.0	1.40	7.0	5.0m @ 1.40 g/t	
							Incl 134.0	135.0	1.0	4.40	4.4	1.0m @ 4.40 g/t	
							159.0	161.0	2.0	1.54	3.1	2.0m @ 1.54 g/t	
							164.9	166.0	1.1	2.95	3.2	1.1m @ 2.95 g/t	
							171.0	172.0	1.0	40.33	40.3	1.0m @ 40.33 g/t	
							191.3	196.0	4.8	2.39	11.3	4.8m @ 2.39 g/t	
							Incl 195.0	196.0	1.0	9.48	9.5	1.0m @ 9.48 g/t	
							208.3	209.4	1.1	6.24	7.0	1.1m @ 6.24 g/t	

HOLE ID	MGA North	MGA East	RL	AZI	DIP	END DEPTH	DEPTH FROM	DEPTH TO	INTERVAL	GRADE	GRAM METRES	Au g/t interval
RVDD22018	6706727	264625	430	270	-49	252.1	6.0	7.0	1.0	2.52	2.5	1.0m @ 2.52 g/t
							41.0	42.0	1.0	2.48	2.5	1.0m @ 2.48 g/t
							48.0	50.0	2.0	1.45	2.9	2.0m @ 1.45 g/t
							63.0	64.0	1.0	1.06	1.1	1.0m @ 1.06 g/t
							70.0	72.0	2.0	2.10	4.2	2.0m @ 2.10 g/t
							Incl 71.0	72.0	1.0	2.22	2.2	1.0m @ 2.22 g/t
							78.0	79.0	1.0	1.36	1.4	1.0m @ 1.36 g/t
							118.1	119.0	0.9	30.50	27.4	0.9m @ 30.50 g/t
							122.0	122.6	0.7	2.20	1.5	0.7m @ 2.20 g/t
							137.8	138.3	0.5	1.21	0.6	0.5m @ 1.21 g/t
							144.0	146.4	2.4	0.79	1.9	2.4m @ 0.79 g/t
							Incl 144.0	144.2	0.2	2.17	0.4	0.2m @ 2.17 g/t
							149.2	149.5	0.3	5.81	1.6	0.3m @ 5.81 g/t
							169.0	169.9	0.9	1.26	1.1	0.9m @ 1.26 g/t
							174.6	177.0	2.4	0.69	1.6	2.4m @ 0.69 g/t
							179.6	180.0	0.4	1.89	0.7	0.4m @ 1.89 g/t
RVDD22024	6706405	004596	440	070	64	252.6	236.4	237.9	1.5	9.57	14.3	1.5m @ 9.57 g/t
RVDD22024	6706405	264586	440	270	-64	252.6	198.8	199.4	0.6	1.95	1.2 72.2	0.6m @ 1.95 g/t
							232.0 238.7	234.5 244.5	2.5 5.8	29.02 1.92	11.1	2.5m @ 29.02 g/t
							Incl 238.7	239.6	0.9	2.35	2.1	5.8m @ 1.92 g/t 0.9m @ 2.35 g/t
							Incl 230.7	235.6	1.0		4.6	
RVDD22025	6706426	264615	440	270	-58	300.6	238.0	244.5 240.8	2.8	4.61 9.52	26.2	1.0m @ 4.61 g/t 2.8m @ 9.52 g/t
RVDD22025	0700420	204015	440	210	-50	500.0	250.0	251.0	1.0	2.66	2.7	1.0m @ 2.66 g/t
RVDD22026	6706395	264651	439	270	-62	378.5	142.0	143.0	1.0	1.59	1.6	1.0m @ 1.59 g/t
INVDD22020	0100333	204031	455	210	-02	510.5	142.0	149.0	0.5	1.41	0.7	0.5m @ 1.41 g/t
							169.5	170.0	0.5	3.27	1.5	0.5m @ 3.27 g/t
							240.6	243.0	2.4	2.70	6.4	2.4m @ 2.70 g/t
							Incl 241.0	242.0	1.0	4.78	4.8	1.0m @ 4.78 g/t
							272.0	273.0	1.0	1.98	2.0	1.0m @ 1.98 g/t
							320.6	322.9	2.4	26.39	62.3	2.4m @ 26.39 g/t
RVDD22027	6706443	264645	439	270	-62	330.5	156.0	158.0	2.0	1.12	2.2	2.0m @ 1.12 g/t
							220.0	221.0	1.1	3.67	3.9	1.1m @ 3.67 g/t
							242.0	243.0	1.0	4.55	4.6	1.0m @ 4.55 g/t
							277.9	281.2	3.4	14.34	48.0	3.4m @ 14.34 g/t
RVDD22028	6706491	264615	439	270	-62	120.0	59.0	60.0	1.0	3.03	3.0	1.0m @ 3.03 g/t
				210	-02		72.0	73.0	1.0	1.46	1.5	1.0m @ 1.46 g/t
							90.0	91.0	1.0	1.71	1.7	1.0m @ 1.71 g/t
							111.0	112.0	1.0	1.68	1.7	1.0m @ 1.68 g/t
RVDD22028B	6706485	264604	439	270	-62	288.5	59.0	60.0	1.0	1.37	1.4	1.0m @ 1.37 g/t
							67.0	68.0	1.0	1.81	1.8	1.0m @ 1.81 g/t
							81.0	83.0	2.0	2.50	5.0	2.0m @ 2.50 g/t
							Incl 81.0	82.0	1.0	3.99	4.0	1.0m @ 3.99 g/t
							87.0	90.0	3.0	1.44	4.3	3.0m @ 1.44 g/t
							Incl 87.0	88.0	1.0	2.05	2.1	1.0m @ 2.05 g/t
							102.0	103.0	1.0	1.10	1.1	1.0m @ 1.10 g/t
RVDD22029	6706520	264660	437	270	-58	316.2						N.S.I
RVDD22030	6706563	264621	438	270	-60	265.0	88.0	89.0	1.0	1.31	1.3	1.0m @ 1.31 g/t
							94.0	98.0	4.0	1.04	4.2	4.0m @ 1.04 g/t
RVDD22031	6706599	264641	437	270	-57	294.4	25.0	26.0	1.0	1.55	1.6	1.0m @ 1.55 g/t
							102.0	103.0	1.0	1.92	1.9	1.0m @ 1.92 g/t
							111.0	112.0	1.0	1.47	1.5	1.0m @ 1.47 g/t
RVDD22032	6706395	264649	439	270	-57	300.4	99.0	100.0	1.0	1.18	1.2	1.0m @ 1.18 g/t
							257.8	259.0	1.2	50.96	60.6	1.2m @ 50.96 g/t
RVDD22033	6706456	264580	440	270	-60	230.0	37.0	39.0	2.0	1.38	2.8	2.0m @ 1.38 g/t
RVDD22034	6707054	264271	444	96	-54	267.9						N.S.I
RVDD22035	6707053	264271	444	80	-54	230.9						N.S.I
RVDD22038	6706868	264617	421	270	-55	66.0	44.0	45.0	1.0	1.17	1.2	1.0m @ 1.17 g/t
RVDD22039	6706879	264587	422	284	-50	48.0	47.0	48.0	1.0	1.19	1.2	1.0m @ 1.19 g/t
RVDD22040	6706878	264589	422	275	-51	84.0	57.0	60.0	3.0	1.26	3.8	3.0m @ 1.26 g/t
RVDD22041	6706876	264590	422	265	-55	84.0	60.0	64.0	4.0	2.48	9.9	4.0m @ 2.48 g/t
RVDD22043	6706894	264339	443	54	-67	306.4	80.0	81.0	1.0	1.06	1.1	1.0m @ 1.06 g/t
RVDD22044	6707034	264278	444	108	-58	290.3						N.S.I
RVDD22045	6706690	264649	430	263	-60	354.7	51.0	52.0	1.0	1.56	1.6	1.0m @ 1.56 g/t
							72.0	73.0	1.0	1.41	1.4	1.0m @ 1.41 g/t
							107.0	108.0	1.0	1.51	1.5	1.0m @ 1.51 g/t
RVDD22046A	6706595	264651	437	270	-65	404.5	15.0	16.0	1.0	1.16	1.2	1.0m @ 1.16 g/t
		264653	437	244	-66	96.0	34.0	35.0	1.0	1.14	1.1	1.0m @ 1.14 g/t

HOLE ID	MGA North	MGA East	RL	AZI	DIP	END DEPTH	DEPTH FROM	DEPTH TO	INTERVAL	GRADE	GRAM METRES	Au g/t interval
RVDD22049	6706436	264817	436	260	-60	690.5	350.0	350.7	0.7	4.15	3.0	0.7m @ 4.15 g/t
							352.8	353.1	0.3	2.34	0.7	0.3m @ 2.34 g/t
							361.5	363.5	2.0	0.76	1.5	2.0m @ 0.76 g/t
							365.5	366.0	0.5	6.82	3.3	0.5m @ 6.82 g/t
							Incl 365.7	366.0	0.3	10.30	3.0	0.3m @ 10.30 g/t
							377.0	378.0	1.0	1.10	1.1	1.0m @ 1.10 g/t
							380.5	380.7	0.2	1.21	0.3	0.2m @ 1.21 g/t
							406.2	407.0	0.8	1.74	1.5	0.8m @ 1.74 g/t
							409.9 420.2	410.3 421.1	0.5	1.50 1.26	0.7	0.5m @ 1.50 g/t
							420.2 507.3	508.0	0.3	26.10	18.8	0.9m @ 1.26 g/t 0.7m @ 26.10 g/t
							557.1	558.2	1.0	14.61	15.2	1.0m @ 14.61 g/t
							578.0	579.5	1.4	14.21	20.3	1.4m @ 14.21 g/t
RVRC22002	6707151	264322	445	90	-62	180.0	0.0	1.0	1.0	1.29	1.3	1.0m @ 1.29 g/t
							147.0	150.0	3.0	19.05	57.1	3.0m @ 19.05 g/t
RVRC22003	6707190	264298	446	90	-53	176.0	117.0	118.0	1.0	1.06	1.1	1.0m @ 1.06 g/t
							151.0	156.0	5.0	1.77	8.8	5.0m @ 1.77 g/t
							Incl 155.0	156.0	1.0	3.62	3.6	1.0m @ 3.62 g/t
							161.0	162.0	1.0	5.47	5.5	1.0m @ 5.47 g/t
							165.0	167.0	2.0	1.79	3.6	2.0m @ 1.79 g/t
							Incl 166.0	167.0	1.0	2.06	2.1	1.0m @ 2.06 g/t
RVRC22004	6707236	264308	446	90	-58	176.0						N.S.I
RVRC22005	6706832	264389	444	84	-58	150.0	90.0	91.0	1.0	1.91	1.9	1.0m @ 1.91 g/t
							100.0	101.0	1.0	1.22	1.2	1.0m @ 1.22 g/t
							108.0	109.0	1.0	1.96	2.0	1.0m @ 1.96 g/t
							112.0	114.0	2.0	3.13	6.3	2.0m @ 3.13 g/t
							Incl 112.0	113.0	1.0	4.80	4.8	1.0m @ 4.80 g/t
RVRC22006	6706870	264601	421	280	-50	200.0	5.0	7.0	2.0	1.39	2.8	2.0m @ 1.39 g/t
							10.0	16.0	6.0	2.42	14.5	6.0m @ 2.42 g/t
							Incl 12.0	16.0	4.0	3.14	12.5	4.0m @ 3.14 g/t
							114.0	115.0	1.0	1.93	1.9	1.0m @ 1.93 g/t
							135.0	136.0	1.0	1.52	1.5	1.0m @ 1.52 g/t
0.000007	6706074	004040	101	000	50	040.0	148.0	149.0	1.0	1.11	1.1	1.0m @ 1.11 g/t
RVRC22007	6706874	264616	421	299	-58	213.0	40.0	42.0	2.0	4.08	8.2	2.0m @ 4.08 g/t
							46.0	47.0	1.0	2.88	2.9	1.0m @ 2.88 g/t
							113.0 123.0	114.0 124.0	1.0 1.0	1.16 1.34	1.2 1.3	1.0m @ 1.16 g/t
							125.0	124.0	8.0	1.54	1.3	1.0m @ 1.34 g/t
							Incl 166.0	167.0	1.0	2.45	2.5	8.0m @ 1.54 g/t 1.0m @ 2.45 g/t
							Incl 170.0	171.0	1.0	2.72	2.7	1.0m @ 2.72 g/t
RVRC22008	6706872	264607	421	307	-50	195.0	23.0	24.0	1.0	12.42	12.4	1.0m @ 12.42 g/t
	0100012	204007				0 195.0	83.0	86.0	3.0	1.91	5.7	3.0m @ 1.91 g/t
							Incl 85.0	86.0	1.0	2.91	2.9	1.0m @ 2.91 g/t
							92.0	93.0	1.0	1.78	1.8	1.0m @ 1.78 g/t
							98.0	101.0	3.0	2.16	6.5	3.0m @ 2.16 g/t
							Incl 98.0	99.0	1.0	3.40	3.4	1.0m @ 3.40 g/t
							144.0	151.0	7.0	2.39	16.7	7.0m @ 2.39 g/t
							Incl 145.0	150.0	5.0	2.79	13.9	5.0m @ 2.79 g/t
							180.0	181.0	1.0	1.06	1.1	1.0m @ 1.06 g/t
VRC22009	6706880	264638	421	279	-55	190.0	14.0	15.0	1.0	2.62	2.6	1.0m @ 2.62 g/t
							75.0	76.0	1.0	1.15	1.2	1.0m @ 1.15 g/t
							82.0	83.0	1.0	2.07	2.1	1.0m @ 2.07 g/t
							173.0	176.0	3.0	1.83	5.5	3.0m @ 1.83 g/t
							Incl 173.0	174.0	1.0	3.88	3.9	1.0m @ 3.88 g/t
VRC22009A	6706881	264636	421	279	-55	190.0	4.0	5.0	1.0	1.43	1.4	1.0m @ 1.43 g/t
							27.0	31.0	4.0	3.85	15.4	4.0m @ 3.85 g/t
							Incl 27.0	28.0	1.0	12.36	12.4	1.0m @ 12.36 g/t
							61.0	62.0	1.0	5.99	6.0	1.0m @ 5.99 g/t
							121.0	122.0	1.0	1.04	1.0	1.0m @ 1.04 g/t
							132.0	133.0	1.0	2.06	2.1	1.0m @ 2.06 g/t
							173.0	181.0	8.0	1.75	14.0	8.0m @ 1.75 g/t
	6706440	064626	100	005	<u></u>	204.0	Incl 174.0	175.0	1.0	5.76	5.8	1.0m @ 5.76 g/t
RVRD20045	6706418	264636	439	265	-60	321.9	125.0	126.0	1.0	1.02	1.0	1.0m @ 1.02 g/t
RV026	6706500	264507	120	070	-60	250.0	258.0 170.0	259.0	1.0 1.0	2.53 35.40	2.5 35.4	1.0m @ 2.53 g/t
	6706583	264597 264561	439 442	270 267.5	-60 -60	250.0	170.0	171.0	1.0 2.0		35.4	1.0m @ 35.4g/t
GRVRC021 GRVRC026	6706868 6706770	264561	442	267.5	-60	70.0	62.0	108.0 65.0	2.0	18.55 22.64	45.3	2.0m @ 18.5g/t
RVRC026	6706770	264512	440	90 272.4	-61.75 -59.7	119.0	62.0 106.0	65.0 108.0	2.0	11.36	45.3 22.7	2.0m @ 22.6g/t
MRC029	6707000	264576	440	272.4	-59.7	119.0	59.0	65.0	2.0 6.0	4.64	27.8	2.0m @ 11.4g/t 6.0m @ 4.6g/t
RMRC029	6706755	264576	440	274.4	-59.7	119.0	59.0 64.0	76.0	12.0	4.64	60.8	17.0m @ 3.8g/t
RMRC053	6706755	264568	439	274.4	-60.5	131.0	64.0 75.0	76.0 86.0	12.0	5.30	58.0	11.0m @ 3.8g/t
	0100302	204001	-++0	210	-00	101.0	13.0	00.0	11.0	3.30	30.0	11.011 (@ J.Jy/t

HOLE ID	MGA North	MGA East	RL	AZI	DIP	END DEPTH	DEPTH FROM	DEPTH TO	INTERVAL	GRADE	GRAM METRES	Au g/t interval
RMRC155	6706600	264549	441	270	-55	121.0	46.0	56.0	10.0	2.57	25.7	10.0m @ 2.6g/t
RV328	6707088	264440	445	90	-60	120.0	113.0	114.0	1.0	21.50	21.5	1.0m @ 21.5g/t
RVDD16009	6706752	264567	439	275.8	-62.1	206.1	65.0	76.0	11.0	1.97	21.7	11.0m @ 2.0g/t
RVDD16018	6707000	264557	440	269.9	-55	107.0	70.0	75.4	5.4	67.87	365.8	5.4m @ 67.9g/t
RVDD16039	6706620	264564	440	270	-60	169.0	87.0	92.0	3.0	9.40	21.0	5.0m @ 4.2g/t
RVDD16042	6706789	264659	437	271	-60	248.1	222.0	223.0	1.0	41.18	40.4	1.0m @ 41.2g/t
RVDD16050	6706961	264597	440	269.9	-55	151.0	115.0	124.0	5.0	7.85	48.0	9.0m @ 5.4g/t
RVDD16056	6706960	264558	430	269.9	-60	120.3	76.0	84.0	8.0	3.61	28.9	8.0m @ 3.6g/t
RVDD16109	6706920	264465	442	89.89	-55	163.2	132.0	136.0	6.0	4.04	20.0	4.0m @ 4.8g/t
RVDD16230	6706798	264540	440	269.9	-60	207.7	32.0	37.0	15.9	2.92	46.4	5.0m @ 26.0g/t
RVDD20001	6707136	264545	446	209.9	-60	125.0	69.3	70.2	1.2	34.87	37.4	0.9m @ 34.9g/t
RVDD20004	6706995	264449	441	89.89	-60	120.2	85.0	90.0	5.3	4.52	23.9	4.9m @ 3.2g/t
RVDD21009	6706724	264640	438	270	-52	300.3	191.7	193.0	2.0	11.04	14.3	1.3m @ 11.0g/t
RVDD22002	6707071	264522	380	264.8	-60	269.4	12.6	14.0	2.0	52.21	25.0	1.4m @ 17.8g/t
RVDD22003	6706979	264525	380	268.6	-62.94	261.1	22.4	23.0	5.0	6.35	3.8	0.6m @ 6.4g/t
RVDD22005	6706965	264529	380	255	-55.65	208.3	64.4	65.0	2.0	11.10	12.0	0.6m @ 20.1g/t
RVDD22006	6706964	264530	380		-59.68	249.0	18.4	20.7	5.9	5.81	13.0	2.3m @ 5.8g/t
RVDD22008	6706420	264685	438		-65.86	392.9	325.4	325.7	0.7	171.00	119.7	0.3m @ 171.0g/t
							383.0	383.5	0.5	7.60	3.7	0.5m @ 7.6 g/t
RVDD22009B	6706480	264695	437	269.8	-60.5	390.5	307.9	308.7	1.7	4.38	3.5	0.8m @ 4.4g/t
RVDD22009B	6706480	264695	437	269.8	-60.5	390.5	248.5	255.0	3.0	4.98	14.9	6.5m @ 2.8g/t
RVDD22011	6706971	264538	380		-65.03	340.0	131.0	133.0	3.0	2.14	3.4	2.0m @ 1.7g/t
RVDD22011	6706971	264538	380		-65.03	340.0	33.7	38.6	5.6	5.75	19.0	4.9m @ 4.4g/t
RVDD22016	6706688	264612	430		-56.29	96.0	127.0	128.0	1.0	1.34	2.2	2.2m @ 1.0g/t
RVDD22017	6706700	264625	430		-50.23	120.0	164.9	166.0	2.0	2.95	7.0	1.1m @ 2.9g/t
RVDD22017	6706700	264625	430		-50.23	120.0	130.0	135.0	2.0	2.84	7.0	5.0m @ 1.4g/t
RVDD22017	6706700	264625	430		-50.23	120.0	171.0	172.0	1.0	279.00	40.3	1.0m @ 40.3g/t
RVRC19021	6706770	264597	438	269.9	-50.25	143.0	121.0	125.0	4.0	6.18	24.7	4.0m @ 6.2g/t
RVRC19021	6706961	264608	439	269.9	-58	137.0	114.0	117.0	3.0	7.24	24.7	3.0m @ 7.2g/t
RVRC19035 RVRC19047	6707020	264586	439	269.9	-59	149.0		120.1		14.07	28.1	
							118.0		2.0			2.0m @ 14.1g/t
RVDD22001	6707073	264522	380		-65.88	288.9	258.5	263.0	4.5	1.40	6.4	4.5m @ 1.4 g/t
RVDD22002	6707071	264522	380	264.8	-60	269.4	224.4	225.5	1.1	3.20	3.5	1.1m @ 3.2 g/t
RVDD22005	6706965	264529	380	255	-55.65	208.3	165.3	169.2	3.9	4.46	17.4	3.9m @ 4.5 g/t
RVDD22006	6706964	264530	380		-59.68	249.0	215.8	217.6	1.7	5.20	9.0	1.7m @ 5.2 g/t
RVDD22008	6706420	264685	438		-65.86	392.9	357.3	360.1	2.8	5.60	16.5	2.8m @ 6.0 g/t
RVDD22009B	6706480	264691	438	269.8	-60.5	390.5	358.8	360.0	1.2	29.30	35.2	1.2m @ 29.3 g/t
RVRC22002	6707151	264322	445	90	-62.71	180.0	147.0	150.0	3.0	19.10	57.3	3.0m @ 19.1 g/t
RVDD21005	6706576	264581	438	270	-52	180.4	143.8	149.5	5.7	10.10	57.6	5.7m @ 10.1g/t
RVDD21006	6706480	264599	439	270	-60	270.0	200.0	205.0	5.0	16.70	83.5	5.0m @ 16.7g/t
RVDD21007A	6706456	264646	438	270	-58	300.0	253.7	256.5	2.8	21.20	59.4	2.8m @ 21.2g/t
RVDD21008	6706633	264620	437	270	-55	260.0	217.8	219.1	1.3	25.30	32.9	1.3m @ 25.3g/t
RVDD21009	6706724	264640	438	270	-52	300.3	250.8	252.6	1.8	19.20	34.6	1.8m @ 19.2g/t
BRV006	6706765	264384	443	88	-57	198.0	183.0	186.0	3.0	10.29	30.9	3.0m @ 10.29g/t
BRV014	6706519	264401	443	90	-60	241.0	230.0	235.0	5.0	12.85	64.2	5.0m @ 12.9g/t
BRV015	6706572	264421	443	90	-60	234.0	165.0	168.0	3.0	33.60	100.8	3.0m @ 33.6g/t
BRV028	6706559	264612	438	270	-60	257.0	203.0	205.0	2.0	17.75	35.5	2.0m @ 17.8g/t
GRVRC008	6706546	264473	441	90	-60	50.0	36.0	42.0	6.0	5.59	33.6	6.0m @ 5.6g/t
RD002	6707043	264291	444	77	-60	260.0	215.2	218.2	3.0	10.46	31.4	3.0m @ 10.5g/t
RD003	6706996	264301	444	72	-60	270.0	240.2	247.2	7.0	22.70	158.9	7.0m @ 22.7g/t
RMRC065	6706600	264530	442	271.8	-59.3	111.0	82.0	87.0	5.0	6.52	32.6	5m @ 6.5g/t
RV299	6706618	264517	443	270	-60	83.0	62.0	66.0	4.0	14.86	59.4	4m @ 14.9g/t
RVRC20019	6706335	264573	440	269.9	-60	114.0	64.0	71.0	7.0	7.62	53.3	7m @ 7.6g/t
RVRC20194	6706395	264569	440		-55.59	90.0	71.0	77.0	6.0	12.96	77.7	6m @ 12.9g/t
RVRC20197	6706336	264583	440		-60.54	132.0	80.0	90.0	10.0	10.80	108.0	10m @ 10.8g/t
RVRD20045	6706418.4	264636.5	439.5		-60.5	321.9	258.0	259.0	1.0	2.50	2.5	1m @ 2.5g/t

ASX Announcement (ASX: OBM)

19 October 2022

Appendix 3: JORC Tables

JORC CODE, 2012 EDITION – TABLE 1 REPORT TEMPLATE

Section 1 Sampling Techniques and Data

Information for historical (Pre Ora Banda Mining Limited from 1996 and 2001) drilling and sampling has been extensively viewed and validated where possible. Information pertaining to historical QAQC procedures and data is incomplete but of a sufficient quality and detail to allow drilling and assay data to be used for resource estimations. Further Ora Banda Mining Limited has undertaken extensive infill and confirmation drilling which confirm historical drill results. Sections 1 and 2 describe the work undertaken by Ora Banda Mining Limited and only refer to historical information where appropriate and/or available.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Croesus Mining N.L; All samples were dried, crushed and split to obtain a sample less than 3.5kg, and finely pulverised prior to a 50gm charge being collected for analysis by fire assay. Monarch Gold Mining Company Ltd; Industry standard work. RC samples collected and sent to certified laboratories for crushing, pulverising and assay by fire assay (RC) and aqua regia (RAB). Pancontinental Mining Ltd; Samples (>2kg) were crushed to 1mm, 1kg split taken and pulverised to 90% minus 20 mesh from which a 50gm aliquot was taken for assay by aqua regia or fire assay. Consolidated Gold N.L/DPPL[Davyhurst Project PTY. LTD.]; Industry standard work, RAB samples crushed, pulverised and a 50g charge taken for fire assay. 200gm soil samples oven dried, and pulverised, 50g charge taken for aqua regia a sample spear. Samples crushed, pulverised and 50g charge taken for fire assay. RC four metre composite samples were collected using a sample spear. Samples crushed, pulverised and 50g charge taken for fire assay and/or 4 acid digest. Any gold anomalous 4m composite samples were re-sampled over 1m intervals using a riffle splitter and also sent to Kalgoorile Assay Laboratory for gold analysis by 50g fire assay. Barra Resources Ltd; Industry standard work. The entirety of each hole was sampled. Each RC and RAB hole was initially sampled by 4m composites using a spear or scoor. To obtain a representative sample, the entire 1m sample was split using a riffle splitter into a calico bag. Whole diamond core samples for ore zones were sampled. Entire samples were pulverised before splitting and a 50g charge taken for fire assay. Greater Pacific Gold; Core sampling method unknown, assumed to be cut half core. RC sampling method unknown. Analysis method unknown. However, work completed by accredited laboratories, Analabs and Genalysis. Carpentaria Exploration Company Pty Ltd; Samples were collected over 1m intervals. 1m, 2m and 4m composite sample

Criteria	JORC Code explanation	Commentary
		 at geological boundaries, sample method unknown. All samples crushed, pulverised and a charge taken for fire assay (Au) and perchloric acid digest/AAS for other elements. Ora Banda Mining Limited (OBM) - 1m RC samples using face sampling hammer with samples collected under cone splitter. 4m composite RC samples collected using a PVC spear from the sample piles at the drill site. For drilling up to April 2020, RC samples were dispatched for pulverising and 50g charge Fire Assay. For drillholes RVRC20036 to RVRC20104 inclusive, 1m and 4m composite samples were dispatched to the lab, crushed to a nominal 3mm, split to 500 grams and analysed by Photon Assay method at MinAnalytical in Kalgorlie. 4m composite samples with gold values greater than 0.2 g/t Au were re-sampled as 1m split samples and submitted to the lab for Photon Assay analysis. Half-core samples, cut by automated core saw. Core sample intervals selected by geologist and defined by geological boundaries. Samples are crushed, pulverized and a 40g charge is analysed by Fire Assay. For all drilling in 2022, - 1m RC samples using face sampling hammer with samples collected under cone splitter. 4m composite RC samples were taken outside of mineralised zone, collected using a scoop from the sample piles at the drill site. 1m cone spilt samples were taken within the expected mineralised zones. Core sample intervals selected by geologist and defined by geological boundaries. All samples were dispatched to the SGS laboratory at the Davyhurst site for pulverising. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Croesus Mining N.L; Auger samples were drilled by Prodrill Pty Ltd using Toyota mounted auger rig. RAB holes were drilled by either Kennedy, or Arronika or Challenge Drilling of Kalgoorlie. Challenge drilling employed a custom built RAB/AC rig. RC holes were drilled by Ausdrill Pty Ltd and diamond holes were drilled by Sandersons. Core was oriented. Monarch Gold Mining Company Ltd; Aircore and RAB holes were drilled by Challenge Drilling. All RC holes were drilled by Kennedy Drilling Contractors with 5^{1/2/n} hammer. Pancontinental Mining Itd; Drilling was undertaken by Davies Drillling of Kalgoorlie using a Schramn T64 rig. Consolidated Gold N.L/DPPL; Auger samples were collected using a power auger fitted to a 4WD vehicle. RAB drilling was undertaken by Bostech Drilling Pty Ltd. Riverina Resources Pty Ltd; RC holes drilled with 5^{1/4/n} hammer. Unknown diamond core diameter. Barra Resources Ltd; Holes were drilled by Resource Drilling Pty Ltd using a Schramm 450 drill rig. Greater Pacific Gold; Schramm RC Rig with face sampling hammer, 5^{1/8/n} diameter. NQ core, Edson Rig Carpentaria Exploration Company Pty Ltd; RC drilling by Robinson contractors. Face sampling hammer used. Malanti Pty Ltd; Holes were drilled by Redmond Drilling of Kalgoorlie using a truck mounted Schramm rig with a compressor rated at 900 cfm 350 psi. Riverina Gold Mines NL; Vacuum holes were drilled by G & B Drilling using a Toyota Landcruiser mounted Edsom vacuum rig fitted with a 2 inch (5.08cm) diameter blade. RAB holes were drilled by PJ and RM Kennedy using a Hydro RAB 50 drill rig with 750 cfm/350 PSI air capacity. A 51/4 inch hammer and blade were used. RC holes were drilled by either Civil Resources Ltd using an Ingersoll Rand T4W heavy duty percussion rig fitted with a 900 cfm at 350 PSI air compressor and a 51/4 inch (13,34cm diameter) RC hollow hammer or by Swick Drilling using Schramm T66 rig. Diamo
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and 	 Auger, RAB and RC drill recoveries were not recoded by Croesus Mining N.L, Monarch Gold Mining Company Ltd, Pancontinental Mining Ltd, Consolidated Gold N.L/DPPL, Riverina Resources Pty Ltd, Barra Resources Ltd, Carpentaria Exploration Company Pty Ltd, Malanti Pty Ltd, Riverina Gold Mines NL or Riverina Gold Mines NL. However Monarch, in a Riverina resource report state that "Good recoveries for

Criteria	JORC Code explanation	Commentary
	 ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RMRC series RC drilling were observed. Minor water was encountered in 27 of the RMRC series drill holes" Diamond Core recoveries are very high due to the competent ground. Any core recovery issues are noted on core blocks and logged. OBM - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). There is no known relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Croesus Mining NL; RAB drill logs were recorded both on paper and later electronically by a Casiopia datalogger. Diamond core was geologically, geotechnically and magnetic susceptibility logged. Qualitative: alteration, colour, contact, grainsize, joint, matrix, texture, rocktype, mineral, struture, sulphide, percent sulphide, vein type, percent vein, weathering. Quanitative: percent sulphide, percent vein, bernent sulphide. Monarch Gold Mining Company Ltd; Qualitative: lithology, mineralisation code, alteration, vein code, sulphide code. Quantitative: percent mineralisation, alteration intensity, percent vein, percent sulphide. Pancontinental Mining Ltd; All drill data was recorded on computer forms and the lithological descriptions were produced by Control Data' Bordata program. Qualitative: colour, weathering, minerals, grainsize, rock, structure, alteration. Quantitative: alteration intensity. Consolidated Gold NL/DPPL; Holes were logged at 1m intervals using a standard logging sheet directly onto a palmotp logger. Qualitative: colour, weathering, minerals, oxidation, colour, grain, texture, texture intensity, alteration, sulphide, comments. Quantitative: alteration mitensity. Riverina Resources Pty Ltd; Qualitative: lithology, minerals, oxidation, colour, grain, texture, texture intensity, alteration, sulphide, percent quartz veins. Barra Resources Ltd; Each meter from all RC drill holes was washed, sieved and collected in chip trays and stored at the Barminco First Hi Mine office. These rock chips were geologically logged using the Barminco Pty Ltd geological logging codes. This data was recovered according to the driller's core blocks and metre marked. The core was logged to the centimetre, and samples were marked up accordingly. The core was geologically logged using the Barminco First Hi Mine office. Qualitative: qualifier, lithology, mineralisation, alteration, alteration, alteration, alteration, alteration, alteratice, pol
Sub- sampling	• If core, whether cut or sawn and whether quarter, half or all core taken.	 Croesus Mining N.L; Auger samples were taken from an average depth of 1.5m to 2m. RAB and Aircore samples were collected in buckets below a free standing cyclone and laid out at 1m intervals in rows of tens adjacent to the drill collar. Composite analytical

Criteria	JORC Code explanation	Commentary
techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampled. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 samples (~3.5 kg) were initially collected over 5m intervals for each hole and a 1m bottom of hole analytical sample. Analytical composite samples were formed by taking a representative scoop through each 1m drill samples. RC drill samples were collected in large plastic retention bags below a freestanding cyclone at 1m intervals, with analytical samples initially formed by composite sampling over 5m intervals. Where samples were (av, analytical composites were formed by spacer sampling, using a 50mm diameter plastic pipe pushed through the drill cuttings in the sample retention bag to the base of the bag. The pipe is removed carefully with the contents of the pipe containing a representation of the retained metre. Wet RC drill samples where thoroughly mixed in the sample retention bag and 'scoop' sampled to form a 5m composite sample. HQ diamond core was cut uing a diamond saw, with half core being submitted to the laboratory for analysis and the other stored. Field samples were taken for RAB, RC and diamond core samples at a rate of 1 in 20. Composite analytical samples or on a metre basis on site. The diamond core was cut uing a diamond saw, with half core being submitted to the laboratory for analysis and the other stored. Field samples were taken for RAB, RC and diamond core samples at a rate of 1 in 20. Composite analytical samples or to mover sassing 75 micron. If sample was 32 kg it was split prior to pulverising and the remainder retained or discarded. A 250g representative split sample was taken, the remaining residue sample stored and a 50gm sample sample was split into a 200-300g subsample and the residue sample stored. A 40grm charge was taken for analysis. Samples were curved to thing a cuplicate sample was submitted ever 20th sample. Pancontinental Mining Ltd; RC samples were sampled at 1 m intervals using a scoop. For bott RC and RAB drilling a duplicate sample was collected at ever 20th sample. Sample ave suberet ever 20th sample. Pancontinental Mining Ltd

Criteria	JORC Code explanation	Commentary
		 2kg which was placed in a calico bag and marked with the drill hole number and interval sampled. The 87.5% was returned to the similarly numbered large plastic bag and laid in rows on site. A trowel was used to scoop the samples for composites over 4m and 6m intervals. Samples for assay were then taken with composite intervals based on geology. Many of the single splits were selected for assay in the first instance. Samples packed in poly weave bags were freighted for analysis. Samples were dried, crushed, split, pulverised and a 50gm charge taken. RC Samples were collected every metre and split. RAB samples were taken every metre through a cyclone after being riffle split to a quarter and composited to 4m intervals. RC samples were taken every metre through a cyclone after being riffle split to a quarter and some composited to 4m. The residue remained on site in plastic bags whilst the quarter split was sent for analysis. For vacuum holes RVV10 to RVV125, a 30grm was taken. RC samples from holes RV110 to RV164 and vacuum hole samples were dried, crushed to nominal 3mm and a 1,000 grm split was taken for pulverising until 90% passed minus 75 microns. A 25grm charge was taken. RC samples from holes RV230 to RV350 were totally pulverised and a 50 grm charge taken. 4m RAB composite samples sere taken ad geological boundaries. Samples were crushed, split, pulverised and a charge taken for analysis. OBM – RC samples were submitted either as individual 1m samples taken onsite from cone splitter or as 4m composite samples speared from the onsite drill sample piles. Half core samples, cut by saw. Core sample intervals selected by geologist and defined by geological boundaries. For drilling up to April 2020, RC samples were dried, crushed, split, pulverised and a 50grm charge taken. For drillholes RVRC20036 to RVRC20104 inclusive, 1m and 4m composite samples were dispatched to the lab, crushed to a nominal 3mm, split to 500 grams and analysed by Photon Assay method at MinAnalytical in Kalgoorlie. 4m co
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Croesus Mining N.L; Auger samples were sent to Ultratrace Laboratories, Perth, to be assayed for gold using the Aqua Regia method with a detection limit of 1ppb. RAB, aircore, RC and diamond samples were sent to Ultratrace Laboratories in Perth to be analysed for gold using Fire assay/ICP Optical Spectrometry. Diamond core check samples were analysed at Genalysis of Perth. Some diamond core samples were also analysed for platinum and palladium by fire assay. Monarch Gold Mining Company Ltd; RC samples were sent to ALS Kalgoorlie to be analysed gold by fire assay (lab code Au-AA26). This was completed using a 50grm sample charge that was fused with a lead concentrate using the laboratory digestion method FA-Fusion and digested and analysed by Atomic Absorption Spectroscopy against matrix matched standard. RC samples were also sent to Ultra Trace Pty Ltd, Canning Vale Western Australia for gold analysis by lead collection fire assay. Samples were also analysed for palladium and platinum. The Quality control at ALS involved 84 pot fire assay system. The number and position of quality control blanks, laboratory standards and repeats were determined by the batch size. Three repeat samples were generally at position 10, 30, 50 of a batch and the control blanks (one blank) at the start of a batch of 84 samples. The laboratory standards were inserted randomly and usually two certified internal standards were analysed with a batch, but it was at the discretion of the 'run builder' as to how many standards to add to the batch and where to place them in the run. QAQC at Ultra Trace Pty Ltd was undertaken for every 27th sample. At random, two repeat samples were chosen, one laboratory standard was inserted and one check sample was taken. The check sample was chosen if the first pass of fire assay shows anomalous value. Pancontinental Mining Ltd; Samples were sent to Genalysis Laboratory Services Pty Ltd in Perth to be analysed for gold with a detection limit of 0.01 ppm. They were als

Criteria	JORC Code explanation	Commentary
		 Consolidated Gold NL/DPPL; Auger samples were submitted to ALS Pty Ltd in Perth to be analysed for gold to a detection limit of 0.001ppm using ALS's PA0206 graphite furnace/AAS technique. Samples were also sent to Andel Laboratories Ltd Kalgoorie for gold analysis by fite assay method FAI. Riverina Resources Pty Ltd; Auger soil samples were sent to Ultra Trace in Perth to be analysed for gold and arasenic using an aqua regia digest and determination by ICP-MS. RC samples were submitted to Kalgoorile Assay Laboratory for gold analysis by 50gm fite assay. Samples from holes GNRC012 to GNRC020 were also sent Kalgoorile Assay Laboratory for gold analysis by 50gm fite assay. Martin Zone samples were to Kalgoorile Assay Laboratory for gold analysis by 50gm fite assay. Martin Zone samples were Kalgoorile Assay Laboratory for gold analysis by 50gm fite assay. Martin Zone samples were Kalgoorile Assay Laboratory for gold analysis by 50gm fite assay. Martin Zone samples were Kalgoorile Assay Laboratory for gold analysis by 50gm fite assay. Martin Zone samples were Kalgoorile Assay Laboratory for gold analysis by 50gm fite assay. Martin Zone samples were Kalgoorile Assay Laboratories to be assayed Wit, CC, CV, Mg, Mn, Fe, S, As, Al, Ca, and Zn using a four acid digest with ICP-OES finish and for Au using a S0gm fite assay digest with fitame AAS finish. Some samples were also sent to Ultra Trace in Perth for analysis. 312 end of hole RAB samples from the Forehand Prospect were sent to taksay taboratories and weathering intensity as well as sample initiare languistic mineral crystalling and marel crystalling and mineral crystalling and marel argenization minerals. weathered clays, Fe oxides, and weathering intensity as well as asample initiare languistic mineral crystalling and marel crystalling and marel argenization minerals. Weathered clays, Fe oxides, and weathering intensity as well as asample initiare analysis dry gold analysis was completed by Outer Rine Exploration Company Mare

Criteria	JORC Code explanation	Commentary
		• Riverina Gold NL; RAB samples were analysed for gold, silver, arsenic, lead, zinc, copper and nickel. RC samples were despatched to Genalysis to be analysed for gold by Aqua Regia/ AAS method. Diamond samples were set to Analabs in Kalgoorlie to be analysed for gold by fire with fusion AAA, copper, lead and silver by ASS with perchloric acid digestion and, arsenic by ASS with vapour generation and density using an air pycnometer.
		 OBM – Up to April 2020, all samples were sent to an accredited laboratory (Nagrom Laboratories in Perth, Intertek-Genalysis in Kalgoorlie or SGS in Kalgoorlie). The samples have been analysed by firing a 50gm portion of the sample. This is the classical fire assay process and will give total separation of gold. An ICPOES finish is used. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:12. Sizing results (percentage of pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 40 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. For drillholes RVRC20036 to RVRC20104, 1m and 4m composite RC samples were sent to MinAnalytical Laboratory Services in Kalgoorlie. Sample prep involves drying and a -3mm crush, of which 500 grams is linear split into assay jars for analysis. Samples are analysed by the Photon assay method which utilises gamma radiation to excite the nucleus of the target atoms (gold). The excited nucleus then emits a characteristic photon, which is counted to determine the abundance of gold in the sample. For all drilling in 2022, All samples were sent to the accredited onsite SGS laboratory at Davyhurst for sample preparation. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay (GQ_FAPSOV10) with MP-AES finish. Commercially prepared standard samples and blanks are inserted in the sample stream at an average rate of 1:25. Sizing results (percentage of pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 20 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. Standards and blanks were inserted into the sample stream at a rate of approximately 1:12. Duplicates were submitted at a rate of approximately 1:30. The accuracy (standards) and precision (repeats) of assaying are acceptable. Fire assay is considered a total technique, Aqua Regia is considered partial. The Photon assay
Verification	The verification of significant intersections by either	Holes are not deliberately twinned.
of sampling and assaying	 independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	• OBM - Geological and sample data logged directly into field computer at the drill rig or core yard using Field Marshall or Geobank Mobile. Data is transferred to Perth via email or through a shared server and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary.
	• Discuss any adjustment to assay data.	 Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Samples bags were put into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory.
		Data entry, verification and storage protocols for remaining operators is unknown.
		No adjustments have been made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Croesus Mining N.L; All drilling was located using a Trimble/Omnistar DGPS with an accuracy of plus or minus 1m. Down hole surveys were either as planned or taken using electronic multi shot camera. The gird system used is AGD 1984 AMG Zone 51. Monarch Gold Mining Company Ltd; The collar co-ordinates of aircore and RAB holes and RC holes RMRC001 to RMRC085 were surveyed using GPS. The co-ordinates of holes RMRC086 to RMRC177 were surveyed using the RTKGPS. All surveying was undertaken by staff of Monarch Gold Mining Company Ltd. Down hole surveys were undertaken every 5m by Ausmine using electronic multi-shot (EMS). The gird system used is GDA94 MGA Zone 51.

Criteria	JORC Code explanation	Commentary
		 Pancontinental Mining Ltd; RC drilling at Mulwarrie was surveyed by McGay Surveys. The grid system used is AMG Zone 51. RAB drilling at Riverina South – holes drilled on local Riverina grid and transformed to MGAa using 2 point transformation. Holes were not routinely downhole surveyed. Consolidated Gold NL/DPPL; Auger holes located on AMG grid. Some RAB holes were drilled on an AMG grid installed by Kingston Surveys Pty Ltd of Kalgoorlie. Each 40m grid peg had an accurate (plus or minus 10 cm) northing, easting and elevation position. Other RAB holes not down hole surveyed Riverina Resources Pty Ltd; Collar co-ordinates were surveyed using a DGPS. Collar azimuth and inclination were recorded. Downhole surveyed is AGD 1984 AMG Zone 51. Barra Resources Ltd; Collar co-ordinates for northings, eastings and elevation have been recorded. Collar azimuth and inclination were recorded. Drill hole collar data was collected by the First Hit mine surveyor and down hole data was collected by the drilling company and passed onto the supervising geologist. The grid system used is AGD 240(2) Collar surveyed by gryg (Acc Drilling). Graeter Pacific Gold; Collars surveyed on Riverina local Mine grid. 2 point grid transformation translates coordinates. Holes were not downhole surveyed by gryg (Acc Drilling). Carpentaria Exploration Company Pty Ltd; A local Riverina South grid was employed to record collar coordinates. Holes were not downhole surveyed. Local co-ordinates were transferred to the AMG and MGA grids using a 2-point transformation. Malanti Pty Ltd; Collar locations of re-sampled RAB holes were ot 1. Local co-ordinates were to and AGD 1996 AMG 20ne 51. Local co-ordinates were transferred to the AMG and MGA grids using a 2-point transformation. Malanti Pty Ltd; Collar locations of northings and eastings and have been recorded. Collar inclination was recorded. The grid usid as 3-point transformation. Riveri
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Exploration results are reported for single holes only. Drill hole spacing is adequate for the current resources reported externally. (Examples are discussed below) Croesus Mining N.L; Auger samples were collected to infill a 250m x 100m grid, Riverina South RAB samples were collected to infill a 400m x 80m grid and Sunraysia RC drilling was completed on a 40m x 200m grid. Monarch Gold Mining Company Ltd; RAB holes were drilled on 200m x 40m grids and RC holes were drilled on a 20m x 20m and 40m x 20m grids. Riverina Resources Pty Ltd; Auger soil sampling program was taken over 50m x 50m, 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 25m, 25m x 50m and 50m x 50m, 50m x 100m and 50m x 200m spaced grids. Barra Resources Ltd; Auger soil sampling program was taken over 50m x 50m, 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 25m, 25m x 50m and 50m x 50m, 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 25m, 25m x 50m and 50m x 50m, 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 25m, 25m x 50m and 50m x 50m, 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 25m, 25m x 50m and 50m x 50m spaced grids, Corporate James RAB holes were drilled on 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 25m, 25m x 50m and 50m x 50m spaced grids, Corporate James RAB holes were drilled on 50m x 50m spaced grids, Corporate James RAB holes were drilled on 50m x 50m spaced grids, Corporate James RAB holes were drilled on 50m

Criteria	JORC Code explanation	Commentary
		 x 100m and 25m x 100m spaced grids, Forehand RAB and RC holes were drilled on 50m x 100m, 50m x 50m or 25m x 50m spaced grids and Cactus RC holes were drilled on 10m x 10m, 20m x 20m and 40m x50m spaced grids. Drill intercepts are length weighted, 1.0g/t lower cut-off, not top-cut, maximum 2m internal dilution.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was oriented at 90° to the strike of mineralisation and inclined at 60°. Examples are discussed below. Croesus Mining N.L; Holes were either vertical or inclined at 60° and oriented towards the west. Monarch Gold Mining Company Ltd; Holes were inclined at 60° and oriented towards the west. Consolidated Gold N.L/DPPL; Holes were inclined at 60° and oriented towards either the west or east. Riverina Resources Pty Ltd; Holes were either vertical or inclined at 60° and oriented towards the west. Greater Pacific Gold; Holes drilled to the east inclined at 60° and oriented towards either the west or east. Greater Pacific Gold; Holes drilled to the east inclined at 60° and oriented towards either the west or east. Greater Pacific Gold; Holes were inclined at 60° and oriented towards either the west or east. Greater Pacific Gold; Holes were inclined at 60° and oriented towards either the west or east. Malanti Pty Ltd; Holes were inclined at 60° and oriented towards either the west or east. Riverina Gold Mines NL; Vacuum holes from RVV1 to RVV69 and from RVV126 to RVV204 were drilled vertically. Vacuum holes from RVV70 to RVV125 were inclined at 60° and oriented either east or west. Riverina Gold NL; RC holes were inclined at 60° and oriented either east or west. OBM – RC drilling is predominately inclined at between -50 and -60 degrees towards the west. Drilling inclined to the east is only done when lodes are deemed to be vertical or if local landforms prevent access.
Sample security	• The measures taken to ensure sample security.	 Unknown for all drilling except for the following; Barra Resources Ltd. Samples received at the laboratory were logged in ALS Chemex's unique sample tracking system. A barcode was attached to the original sample bag. The label was then scanned and the weight of sample recorded together with information such as date, time, equipment used and operator name. Monarch; Sample calicos were put into numbered plastic bags and cable tied. Any samples that going to SGS were collected daily by the lab. Samples sent to ALS were placed into sample crates and sent via courier on a weekly basis. OBM - Samples were bagged, tied and stored in a secure yard on site. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	OBM has reviewed historical digital data and compared it to hardcopy and digital (Wamex) records.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All tenure pertaining to this report is listed below TENEMENT HOLDER AGREEMENTS M30/256 CARNEGIE GOLD PTY LTD. Carnegie Gold PTY LTD is a wholly owned subsidiary of OBM. There are no known heritage or native title issues. There are no known impediments to obtaining a licence to operate in the area.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	• Drilling, sampling and assay procedures and methods as stated in the database and confirmed from Wamex reports and hard copy records are considered acceptable and to industry standards of the time.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The geology of the Riverina South area consists of an interlayered sequence of meta-basalts, meta-sediments and ultramafics, rarely cross-cut by narrow pegmatite dykes. The local stratigraphy strikes roughly N-S with primarily steep east to sub-vertical dips. The area has been affected by upper greenschist to lower amphibolite grade metamorphism with many minerals exhibiting strong preferred orientations. All rock units exhibit strain via zones of foliation, with strongly sheared zones more common in ultramafic lithologies. Contemporaneous strike faults and late stage faults have dislocated the stratigraphy and hence, mineralisation Gold mineralisation is hosted by quartz-sulphide and quartz-Fe oxide veining primarily in the metabasalts. Metasediments and ultramafics may also contain gold mineralised quartz veining, although much less abundant. Gold mineralisation is also seen in silicabiotite-sulphide and silica-sericite-sulphide alteration zones in the metabasalts.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why 	See list of drill intercepts.

Criteria	JORC Code explanation	Commentary
	this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Original assays are length weighted. Grades are not top cut. Lower cut off is nominally 1.0g/t. Due to the narrow nature of mineralisation a minimum sample weight of 0.2m was excepted when calculating intercepts. Maximum 2m internal dilution Metal equivalents not reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Intercept widths are down hole lengths. True widths are not reported given the varying orientation of drilling and mineralisation at each deposit/prospect mentioned in the report. The geometry of the mineralisation at Riverina South is approx. N-S and sub vertical. Drilling is oriented perpendicular the strike of the mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See plans and cross-sections.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• The location of drill hole intersections is shown on the plans and 2D/3D diagrams and are coloured according to grade to provide context for the highlighted intercepts
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or 	 Riverina has no known reported metallurgical issues. Results from previous processing have demonstrated that good gold recovery can be expected from conventional CIL processing methods. Recent metallurgical test work demonstrated the following gold recoveries: Oxide – 90% Transitional – 97% Fresh – 94%

Criteria	JORC Code explanation	Commentary
Further work	 contaminating substances. The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling 	 Resource modelling followed by resource estimation at Riverina South. Infill and extensional drilling at Riverina South, Forehand, Silver Tongue, Sunraysia, followed by further resource updates. Assessment of all regional data to develop new exploration targets.
	areas, provided this information is not commercially sensitive.	

(Criteria in this section apply to all succeeding sections.)